CONTENTS 1

Ogen: An Overlapping Grid Generator for Overture

William D. Henshaw *

CASC: Centre for Applied Scientific Computing?
Lawrence Livermore National Laboratory
Livermore, CA, 94551

henshaw@lInl.gov
http://www.lInl.gov/casc/people/henshaw
http://www.lInl.gov/casc/Overture

November 2, 2003

UCRL-MA-132237

Abstract:

We describe how to generate overlapping grids for use with Overture using the ogen program. The user must first generate
Mappi ngs to describe the geometry (a set of overlapping grids whose union covers the domain). The overlapping grid then is
constructed using the Ogen grid generator. This latter step consists of determining how the different component grids
interpolate from each other, and in removing grid points from holes in the domain, and removing unnecessary grid points in
regions of excess overlap. This document includes a description of commands, presents a series of command files for
generating various overlapping grids and describes the overlapping grid algorithm. The ogen program can also be used to
build unstructured hybrid grids where the overlap is replaced by an unstructured grid.

Contents

1 Introduction 3

2 Commands 3
2.1 Commands for 0gen o 3
2.2 Commands when creating Mappings e 3

3 Things you should know to make an overlapping grid 5
3.1 Boundary conditions 5
3.2 Shareflag 6
3.3 Turning off the cuttingof holes 6
3.4 Turning off interpolation between grids 6
3.5 Implicit versus explicit interpolation 6

4 Examples 8
41 SQUATE . . o o 8
4.2 Stretched ANNUIUS L L L L 9
4.3 Cylinderinachannel 10

1This work was partially supported by grant N00014-95-F-0067 from the Office of Naval Research
2Management prefers the spelling ‘Center’

CONTENTS

10

11

4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
412
4.13
414
4.15
4.16
417
4.18
4.19

Cylinder in a channel, cell-centered version
Cylinder in a channel, fourth-order version
Cylinder in a channel, multigrid version e

NACA airfoil
Hybrid grid for the inlet-outlet
Stretched cube

Sphere in a box
Sphere in a tube
Intersecting pipes
Body Of Revolution

Adding new grids to an existing overlapping grid.
Incrementally adding grids to an overlapping grid.
Other sample command filesand grids

Mixed physical-interpolation boundaries, making a c-grid, h-grid or block-block grid

5.1 Automatic mixed-boundary interpolation.
5.2 Manual specification of mixed-boundary interpolationpoints oL
5.3 Spitting a grid for interpolationof agridtoitself.

Manual Hole Cutting and Phantom Hole Cutting

Trouble Shooting

7.1 Failure of explicitinterpolation

7.2 Tips

Adding user defined Mapping’s

Overlapping Grid Generator: Ogen
9.1 Command desCriptions e e

9.2
9.3
9.4
9.5
9.6
9.7

Interactive updateOverlap e
9.1.2 Non-interactive updateOverlap
9.1.3 Moving Grid updateOverlap
Hole cutting algorithm L e
Finding exterior points by ray tracing e
Adjusting grid points for the boundary mismatch problem
Refinement Grids
Improved Quality Interpolation

Treatment of nearby boundaries and the boundaryDiscretisationWidth

Adaptive Mesh Refinement
11.1 The algorithm for updating refinement meshes added to an overlappinggrid.
11.2 Example: CircleinaChannel

11.3 Example: Valve

11
12
13
14
19
21
23
25
26
28
30
32
34
36
37
39

47
47
47
48

51

52
52
54

55

57
57
57
57
57
59
59
60
62
64
65
65

67

1 INTRODUCTION 3

1 Introduction

The ogen program can be used to interactively generate overlapping grids.
The basic steps to follow when creating an overlapping grid are

e create mappings that cover a domain and overlap where they meet.
e generate the overlapping grid (ogen calls the grid generator Ogen).
e save the grid in a data-base file.

The ogen program is found in the Over t ur e/ bi n directory. Just type ogen to get started. You can also type * ogen
nopl ot’ inwhich case ogen will run without graphics. This is useful if you just want to execute a command file to regenerate
a grid — running without graphics is faster. If you have a command file, exanpl e. cnd, then you can type * ogen exam
pl e.cnd’ or‘ ogen exanpl e’ (a.cnd will automatically be added) to run the commands in the file. To run without
graphics type * ogen nopl ot exanpl e’.

Once you have made a grid and saved it in a data-base file (named myGri d. hdf , for example) you can look at it using the
command Overture/ bin/ plotStuff nyGid. hdf (orjustOverture/bin/plotStuff nmyGid).

Figure 1 shows a snap-shot of ogen running.

Other documents of interest that are available through the Overture home page are

e Mapping class documentation : mappi ng. t ex, [2]. Many of the mappings that are used to create an overlapping grid
are documented here.

e Interactive plotting : Pl ot St uf f . t ex, [3].

2 Commands

2.1 Commands for ogen
The commands in the initial ogen menu are
create mappings : create mappings to represent the geometry. See section (2.2).

generate an overlapping grid : once mappings have been created an overlapping grid can be generated with this option. This
will call the Ogen grid generator. See section (9.1) for a list of the commands available with the grid generator.

make an overlapping grid : this calls the old Cgsh grid generator, the original Overture grid generator.

save and overlapping grid : Save an overlapping grid in a data base file.

2.2 Commands when creating Mappings

The basic commands available from the cr eat e nmappi ngs menu option are (this list will in general be out of date so you are
advised to run ogen to see the currently available options). Most of these commands simply create a new Mapping and call the
update function for that Mapping. Descriptions of the Mapping’s referred to here can be found in the mapping documentation

[2].
help : output minimal help.
1D Mappings :

line : Build a line in 1D. This can be used for a 1D overlapping grid. Reference Li neMappi ng.
stretching function : Reference St r et chMappi ng.
spline (1D) : Reference Spl i neMappi ng.
2D Mappings :
Airfoil : Build a two-dimensional airfoil from various choices including the NACA 4 digit series airfoils. Reference
Ai r f oi | Mappi ng.
Annulus : Reference Annul usMappi ng.

2 COMMANDS 4

Circle or ellipse : Reference Ci r cl eMappi ng.

DataPointMapping : Build a new Mapping from a set of discrete data points. The data points may be read from a
plot3d file. Reference Dat aPoi nt Mappi ng.

line (2D) : Reference Li neMappi ng.

nurbs (curve) : build a NURBS (a type of spline) curve or surface from control points or by interpolating data points.
Reference Nur bsMappi ng.

rectangle : Reference Squar eMappi ng.

SmoothedPolygon : Build a grid or curve with a boundary that is a polygon with smoothed out corners. Reference
Snoot hedPol ygonMappi ng.

spline : Reference Spl i neMappi ng.
tfi : Build a new Mapping from existing curves or surfaces using transfinite interpolation (Coon’s patch). Reference
TFI Mappi ng.
3D Mappings :

Box : Reference BoxMappi ng.

Cylinder : Reference Cyl i nder Mappi ng.

Circle or ellipse (3D) : Reference G r cl eMappi ng.
CrossSection : Reference Cr ossSect i onMappi ng.

DataPointMapping : Build a new Mapping from a set of discrete data points. The data points may be read from a
plot3d file. Reference Dat aPoi nt Mappi ng.

line (3D) : Reference Li neMappi ng.

nurbs (surface) :build a NURBS (a type of spline) curve or surface from control points or by interpolating data points.
Reference Nur bsMappi ng.

plane or rhombus : Reference Pl aneMappi ng.
Sphere : Reference Spher eMappi ng.
spline (3D) : Reference Spl i neMappi ng.
tfi : Build a new Mapping from existing curves or surfaces using transfinite interpolation (Coon’s patch). Reference
TFI Mappi ng.
transform :

body of revolution : create a body of revolution from a two-dimensional Mapping. Reference Revol ut i onMappi ng.

elliptic : generate an elliptic grid on an existing grid in order to redistribute grid points. Reference El | i pti c-
Transform

fillet : Build a fillet surface to join two intersecting surfaces. Reference Fi | | et Mappi ng.
hyperbolic : Reference Hyper bol i cMappi ng.
hyperbolic surface : Reference Hyper bol i cSur f aceMappi ng.

intersection : Determine the intersection curve between two intersecting surfaces. Reference | nt er secti on-
Mappi ng.

mapping from normals : Generate a new Mapping by extending normals from a curve or a surface. Reference Nor -
mal Mappi ng.

reparameterize : reparameterize an existing Mapping by

1. restricting the domain space to a sub-rectangle (this would be used to create an refinement patch on an adaptuve
grid)
2. remove a polar singularity by creating a new patch with an orthographic transform.

Reference Repar aneterizati onTransform O thographi cTransform and Restriction-
Mappi ng.

rotate/scale/shift : transform an existing Mapping. Reference Mat r i xMappi ng.

3 THINGS YOU SHOULD KNOW TO MAKE AN OVERLAPPING GRID 5

stretch coordinates : stretch (cluster) the grid points in the coordinate directions. Reference St ret chTr ansf orm
and St r et chMappi ng.

change :
change a mapping : Make changes to an existing Mapping.
copy a mapping : Make a copy of an existing Mapping.
delete a mapping : delete an existing Mapping.

data base :

open a data-base : open an Overture data-base file (new or old).
get from the data-base : read Mapping’s from the data-base.
put to the data-base : save a Mapping in the data-base.

close the data-base : close the data-base.

save plot3d file : write a plot3d file.

read from file :

read plot3d file : read a plot3d formatted file and extract the grids. Each grid becomes a Dat aPoi nt Mappi ng.

read iges file : *experimental* read an IGES (Initial Graphics Exchange Specification) file such as created by
pro/ENGINEER and build NURBS and trimmed NURBS found in the file.

read overlapping grid file : read an existing overlapping grid data base file and extract all the Mapping’s from it. These
Mappings can then be changed.

view mappings : view the currently defined Mappings.

check mapping : check a Mapping to see that it is defined properly. This is normally only done when one defines a new
Mapping.

exit this menu :

3 Things you should know to make an overlapping grid

Here are some things that you will need to know when building overlapping grids. The examples that follow will demonstrate
all of these ideas.

3.1 Boundary conditions

Each side of each component grid must be given a boundary condition value. These boundary conditions are essential since
they indicate whether a boundary is a physical boundary (a value greater than 0), an interpolation boundary (a value equal to
zero) or a side that is has a periodic boundary condition (a value less than zero). The boundary condition values are stored in
an array as

> 0 physical boundary

boundaryCondition(side,axis) = ¢ =0 interpolation boundary
< 0 periodic boundary

boundaryCondition(0,0) = left
boundaryCondition(1,0) = right
boundaryCondition(0, 1) = bottom
boundaryCondition(1,1) = top
boundaryCondition(0,2) = front (3D)
boundaryCondition(1,2) = back (3D)

where si de=0, 1 and axi s=0, 1 in 2D, or axi s=0, 1, 2 in 3D, indicates the face of the the grid. Note that each grid is a
mapping from the unit square or unit cube to a physical domain — the terms left, right, bottom, top, front and back refer to the

3 THINGS YOU SHOULD KNOW TO MAKE AN OVERLAPPING GRID 6

sides of the unit square or cube. When you enter the boundary condition values (when changing them in a mapping) you should
enter them in the order: left, right, bottom, top, front, back.

The grid generator uses physical boundaries to cut holes in other grids that happen to cross that physical boundary. See, for
example, the “cylinder in a channel example” where the rectangular grid has a hole cut out of it. Interpolation boundaries are
non-physical boundaries where the grid generator will attempt to interpolate the points from other component grids. A periodic
boundary can be either be a branch cut (as on an annulus) or it can indicate a periodic domain (as with a square where the right
edge of the square is to be identified with the left edge).

3.2 Share flag

The share flag is used to indicate when two different component grids share a common boundary (see the “inlet outlet” example,
section (4.7). The grid generator uses the share flag so that a boundary of one component grid will not accidently cut a hole
in another grid when the two grids are actually part of the same boundary. This could happen since, due to inaccuracies in
representing each grid, it may seem that the boundary on one grid lies inside or outside the other grid (even though they are
meant to be the same boundary curve).

The share flag is saved in an array that is the same shape as the boundary condi ti on array

share(side,axis) > 0 a code that should be the same on all shared boundaries.
share(0,0) = left
share(1,0) = right
share(0, 1) = bottom
share(1,1) = top
share(0,2) = front (3D)
share(1,2) = back (3D)

where si de=0, 1 and axi s=0, 1 in 2D, or axi s=0, 1, 2 in 3D, indicates the face of the the grid.

Thus the share flags on all grid faces that belong to the same boundary should be given the same share value. This could
be accomplished by setting all shar e values to 1 say, although this is slightly dangerous as the grid generator could make a
mistake. It is better to use a different positive integer for each different boundary.

3.3 Turning off the cutting of holes

By default, the overlapping grid generator will use any physical boundary (a side of a grid with a positive boundar yCondi -
ti on to try and cut holes in any other grid that lies near the physical boundary. Thus in the “cylinder in a channel example”
section (4.3) the inner boundary of the annulus cuts a hole in the rectangular grid. Sometimes, as in the “inlet outlet” example,
section (4.7), one does not want this to happen. In this case it is necessary to explicitly specify which grids are allowed to
cut holes in which other grids. This can be done through in the change par anet er s option with the pr event hol e
cut t i ng option, see section the “inlet outlet” example, (4.7).

3.4 Turning off interpolation between grids

By default all grids can interpolate from all other grids. This default can be changed and you may specify which grids may
interpolate from which other grids. This option can be used, for example, to build grids for two disjoint domains that match
along a boundary as shown in figure (22).

3.5 Implicit versus explicit interpolation

There are two types of interpolation, explicit and implicit. Explicit interpolation means that a point that is interpolated will
only use values on other grids that are not interpolation points themselves. This means that will the default 3 point interpolation
the amount of overlap must be at least 1.5 grid cells wide. With explicit interpolation the interpolation equations can be solved
explicitly (and this faster).

With implicit interpolation the points used in the interpolation stencil may themselves be interpolation points. This means
that will the default 3 point interpolation the amount of overlap must be at least .5 grid cells wide. Thus implicit interpolation
is more likely to give a valid grid since it requires less overlap. With implicit interpolation the interpolation equations are a
coupled system that must be solved. This is a bit slower but the Overture interpolation function handles this automatically.

3 THINGS YOU SHOULD KNOW TO MAKE AN OVERLAPPING GRID 7

Dgen>Create mappings>

Figure 1: A snapshot of ogen

4 EXAMPLES 8

4 Examples

In this section we describe a number of command files that can be used to create various overlapping grids. During an interactive
session a command file can be saved, see the option‘ | og conmands to fil e’ inthefi |l e pull-down menu. By default
the command file ogen. cnd is automatically saved. The command file will record all the commands that are issued. The
command file can be later read in, using ‘ read command file’ inthefil e pull-down menu, and the commands will
be executed. You can also type ‘ ogen exanpl e. cnd’ to run the command file named exanpl e. cnd with graphics or
“ogen nopl ot exanpl e.cnd’ to run without graphics.

The command file can be edited and changed. Once a complicated grid has been created it is usually easiest to make minor
changes by editing the command file. The pause command can be added to the command file which will cause the program
to pause at that point and wait for an interactive response — one can then can either cont i nue or br eak.

4.1 Square

Here is a command file to create a square. (file Overt ur e/ sanpl eG i ds/ squar e5. cnd) We first make a mapping
for the square and assign various parameters such as the number of grid points and the boundary conditions. Any positive
number for the boundary condition indicates a physical boundary. Next the overlapping grid generator is called (make an
over | appi ng gri d) to make an overlapping grid (which is trivial in this case). Finally the overlapping grid is saved in a
data-base file. The data-base file is an HDF formatted file. HDF is the the Hierarchical Data Format (HDF) from the National
Centre for Super-Computing Applications (NCSA). You can look at the data base file created here by typing pl ot St uf f
squar e5. hdf (or just pl ot St uf f squar e5) where pl ot St uf f is found in Over t ur e/ bi n.

1 * nmake a sinple square

2 create nmappi ngs g

3 rectangl e

4 mappi ngNane

5 square 4

6 l'ines i+

7 6 6 ol

8 boundary condi ti ons o

9 1111
10 exit
11 exit
12 = L
13 generate an overlapping grid gl
14 squar e =

15 done

16 change paraneters

17 ghost points

18 all

19 222222 a1
20 exit
21 conpute overl ap
22 exit
23 = |
24 save an overlapping grid ng L L L L o
25 squar e5. hdf Rica 025 050 075 100
26 squar e5 Vs
27 exit

An “overlapping grid” that is just a square

4 EXAMPLES 9

4.2 Stretched Annulus
FAQ : What the heck is going on with the stretching function?! (F. Olsson-Hector)

Answer: Here is a command file to create an annulus with stretching. (file Cver-
ture/ sanpl eGri ds/ stretchedAnnul us. cnd) Grid lines can be stretched in the coordinate directions (i.e. in
the unit-square coordinates). When grid lines are stretched, as in the example below, the graphics screen will show one of the
following

e The mapping to be stretched (annulus)
e The unit square to be stretched.
e The one dimensional stretching function.

The stretching functions are described in the documentation on Mapping’s [2].

1 *

2 * (Ceate an annulus and stretch the grid lines

3 *

4 create nmappings

5 * create an Annulus

6 Annul us

7 l'i nes

8 41 11

9 exit

10 * stretch the grid lines g

11 stretch coordi nates N I

12 transform whi ch mappi ng? r

13 Annul us o

14 stretch “r

15 speci fy stretching al ong axi s=0 r

16 * choose a layer stretching a*tanh(b*(r-c 8-

17 | ayers [

18 1 L

19 = give a,b,c in above fornula g

20 1. 10. .5

21 exit

22 specify stretching along axis=1 g

23 | ayers

24 1 g

25 1. 5. 0. L

26 exit L

27 exit 2L

28 exit T

29 exit this nmenu L

20 |

31 * make an overlapping grid '

32 * L

33 generateanover'appinggrid n§7|\|\|||||||||| T I R R A B R A
34 stret Ched- Annul us +100 075 =030 025 Q0o 025 Q50 a7a 100
35 done K
36 conput e overl ap

37 exit

38 * An annulus with stretching
39 * save as an hdf file

40 *

41 save an overlapping grid
42 stretchedAnnul us. hdf

43 grid

44 exit

For the pundits: The stretched annulus is a St r et chTr ansf or mMapping which is a composition of the St r et ched-
Squar e Mapping and the Annul us Mapping. The St r et chedSquar e uses the St r et ch Mapping where the actual one
dimensional stretching functions are defined.

4 EXAMPLES 10

4.3 Cylinder in a channel

Here is a command file to create a cylinder in a channel. (file Overture/ sanpl eG i ds/ ci c. cnd) In this case we
make two mappings, one a background grid and one an annulus. The boundary conditions on the annulus are set so that
the outer boundary is an interpolation boundary (=0) while the boundary conditions on the branch cut are —1 to indicate a
periodic boundary. We show two overlapping grids, one made with implicit interpolation (default) and one made with explicit
interpolation. The latter has a bigger region of overlap.

.
1 *
2 * circle in a channel s
3 = F
4 create nmappings 100
5 = F
6 rectangle [
7 set corners 00
8 -2. 2. -2. 2.
9 l'i nes 000
10 32 32 [
11 boundary conditions F
12 1111 B
13 mappi ngNanme [
14 square o0
15 exit [
16 = F
17 Annul us oo
18 l'i nes
19 33 7 [) A) R S R R O O I
20 * centre -200 -150 —1.00 -0.50 0.00 0.50 1.00 1.50 y 2.00
21~ 0. 1.
22 boundary conditions
5‘31 it 1-110 An overlapping grid for a cylinder in a channel with implicit interpolation
25
26 exit
27 generate an overlapping grid 200
28 square N
29 Annul us i
30 done 150
31 change paraneters [
32 * choose inplicit or explicit interpolati 1o
33 * interpolation type
34 * inplicit for all grids [
35 ghost points 050
36 al [
37 222222 oo
38 exit i
39 * display internediate results
40 conpute overl ap —osor
41 exit i
42 * o0
43 save an overlapping grid [
44 cic. hdf -
45 cic -1
46 exit F
47 2 | | P Y PO Y i | A o | n

UO" i Aol i .
-200 -150 -1.00 -050 0.00 Q.50 1.00 150 2.00
X

An overlapping grid for a cylinder in a channel with explicit interpolation

4 EXAMPLES

4.4 Cylinder in a channel, cell-centered version

11

Here we repeat the last example but create a cell-centered grid. In a cell-centered grid the cell-centres of one grid are interpolated

from the cell-centres of another grid. For this reason the cell-centred grid requires slighly more overlap between the component

CoO~NOUIARWNE

grids.

* circle in a channel, cell centered grid
*
create nappi ngs
*
rectangl e
set corners
-2, 2. -2, 2.
I'ines
32 32
boundary conditions
1111
mappi ngName
squar e
exit
*
Annul us
l'i nes
337
boundary conditions
-1-110
exit
*
exit
generate an overlapping grid
squar e
Annul us
done

change paraneters
* make the grid cell-centered
cell centering
cell centered for all grids
exit
conpute overl ap
exit
*
save an overlapping grid
ci cCC. hdf
cicCC
exit

compute overlap

2.00

o]
=]
T

0.00

-0.50

=1.00

—-1.50F

G o W P S5 D 5 R S [A P
-2.00 -150 -1.00 -050 0.00 Q.50 1.00 1.50 2.00
X

An overlapping grid for a cylinder in a channel, cell-centered case.

OCO~NOURAWNE

4 EXAMPLES

4.5 Cylinder in a channel, fourth-order version

12

Here we repeat the last example but create a grid appropriate for a fourth-order discretization. We need to increase the discretiza-
tion width to 5 and the interpolation width to 5. This can either be done explicitly or the option “or der of accuracy” can
be used. Notice that two lines of interpolation points are generated as required by the wider stencil.

* circle in a channel, for fourth order accuracy. This

* can be used with prinmer/wave

*

create mappi ngs
*

rectangl e
set corners
-2. 2. -2, 2.
l'i nes
129 129
boundary conditions
1111
mappi hgName
square
exit
*
Annul us
l'i nes
161 9
outer radius
.75
boundary conditions
-1-110
exit
*
exit
generate an overlapping grid
squar e
Annul us
done
change paraneters
* choose inplicit or explicit
i nterpol ation type

implicit for all grids

* explicit for all grids
ghost points

al

2222

order of accuracy
fourth order

discretization width
al

55

interpolation width
al

al

55

EE R T

exit
conput e overl ap
exit
*
save an overlapping grid
ci c. 4. hdf
cic4
exit

interg

we could al so do the follow ng:

2.00

1.50

-0.50

—1.00

-1.50

-2.00
-2.00 -150 -1.00 -0.50 0.00 0.50 1.00 1.50 2.00
X

An overlapping grid for a cylinder in a channel, fourth-order case.

4 EXAMPLES

4.6 Cylinder in a channel, multigrid version

Here we make a grid that can be used with a multigrid solver. The only difference in the command file is that we must specify
how many multigrid levels we require. NOTE that since each multigrid level must be a valid overlapping grid you cannot
expect to have more than a few levels. See the examples in the primer for how to access the different multigrid levels in a

Conposi teGi d.

1 *

2 * circle in a channel with M5 1levels
3 *

4 create nmappings

5 *

6 rectangle

7 set corners

8 -2, 2. -2, 2.

9 l'i nes

10 45 45

11 boundary conditions

12 1111

13 mappi ngNanme

14 squar e

15 exit

16 *

17 Annul us

18 l'i nes

19 65 9

20 boundary conditions

21 -1-110

22 exit

23 =

24 exit

25 generate an overlapping grid
26 specify nunber of multigrid |evels
27 2

28 squar e

29 Annul us

30 done

31 change paraneters

32 i nterpol ation type

33 explicit for all grids
34 ghost points

35 all

36 222222

37 exit

38 * pause

39 conpute overl ap

40 exit

41 save an overlapping grid
42 ci cnyg. hdf

43 cic

44 exit

2.00

1.00 i
0.50 :
0.00 i
-0.50 F
-1.00 i
-1.50 :

—2.00

—2.00

-1.50

—1.00

—-0.50

0.00

0.50

1.00

150

X

2.00

An overlapping grid for a cylinder in a channel, multigrid level 0.

2.00

1.00 i
0.50 I
0.00 i
-0.50 r
-1.00 i
-1.50 :

—2.00

—2.00

-1.50

—1.00

-0.50

0.00

0.50

1.00

150

x

200

An overlapping grid for a cylinder in a channel, multigrid level 1.

4 EXAMPLES 14

4.7 Inlet-outlet
In this example we demonstrate

share flags: to specify that two component grids have sides that belong to the same physical boundary curve. This prevents
one physical boundary from accidently cutting a hole on a grid that shares the same boundary.

no hole cutting: turn off hole cutting to prevent physical boundaries from cutting holes in some other grids.

view mappings: the mappings can be plotted with boundaries coloured by the boundary condition values or coloured by the
share flag values. This allows one to check that the values have been set properly.

This grid is remarkably similar to a grid created by Anders Petersson.
Here is a command file to «create the grid for the inlet-outlet example. (file Over-
ture/ sanpl eGids/inletQutlet.cnd).

1 = 55 0110

2 * create a grid to denonstrate various features 56 * One boundary here should nmatch one boundary of
3 = 57 * the backG oundGid, while another boundary

4 create mappings 58 * shoul d match a boundary on the inlet-bottom
5 * make a back ground grid 59 * Set share flag to match correspondi ng share val ues
6 rectangl e 60 share

7 set corners 61 0520

8 02 01 62 exit

9 l'i nes 63 ~*

10 61 31 64 Snoot hedPol ygon

11 mappi ngNane 65 nmappi ngName

12 backG oundGi d 66 inlet-bottom

13 share 67 vertices

14 1234 68 3

15 exit 69 2. .15

16 * make an annul us 70 2. .35

17 Annul us 71 2.25 .35

18 centre for annul us 72 l'i nes

19 1. .5 73 25 11

20 i nner radius 74 n-di st

21 .2 75 fixed normal distance

22 outer radius 76 L1752

23 .4 77 shar pness

24 l'i nes 78 10.

25 41 9 79 10.

26 mappi ngNane 80 10.

27 annul us 81 t-stretch

28 boundary conditions 82 0. 10.

29 -1-110 83 1. 10.

30 exit 84 0. 10.

31 * the inlet (on the right) will consist of two 85 boundary conditions

32 * snoot hed pol ygons 86 0110

33 Snoot hedPol ygon 87 * One boundary here should match one boundary
34 mappi ngNane 88 * of the backGoundGid, while another boundary
35 inlet-top 89 * shoul d match a bounbdary on the inlet-bottom
36 vertices 90 * Set share flag to match correspondi ng share val ues
37 3 91 share

38 2. .85 92 0520

39 2. .65 93 exit

40 2.25 .65 94 * here is an outlet grid nmade in the poor man's way
41 n-di st 95 rectangl e

42 fixed normal distance 96 set corners

43 -.175 .2 97 -.35.05 .3 .7

44 shar pness 98 l'i nes

45 10. 99 15 15

46 10. 100 mappi ngNane

47 10. 101 outl et

48 t-stretch 102 boundary conditions

49 0. 10. 103 1011

50 1. 10. 104 exit

51 0. 10. 105 * now | ook at the mappings

52 l'i nes 106 vi ew mappi ngs

53 25 11 107 backG oundGri d

54 boundary conditions 108 annul us

130
131
132
133

4 EXAMPLES
inlet-top 134 inlet-bottom
inlet-bottom 135 done
out | et 136 change paraneters
* 137 prevent hole cutting
* The grid is plotted with boundaries col our €88 backG oundGri d
* by the boundary condition nunber. Here we 139 al |
* shoul d check that all interpolation boundarids outl et
* are 0 (blue), all physical boundaries are (detlitive al |
* and periodi ¢ boundaries are black 142 done
* pause 143 ghost points
* 144 al |
* now we plot the boundaries by share value 145 222222
* The sides that correspond to the sane boundaity exit
* shoul d be the sanme col our 147 * display internediate
col our boundaries by share val ue 148 * set debug paraneter
* pause 149 = 31
erase and exit 150 conpute overl ap
exit 151 exit
generate an overl apping grid 152 =*
* put the nonconforming grid first to be a |ower 153 save an overlapping grid
* priority than the back-ground 154 inletQutlet. hdf
out | et 155 inletQutlet
backG oundGi d 156 exit
annul us 157

inlet-top

The cell-centred version may be created with Over t ur e/ sanpl eGi ds/inletQutlet.

cnd.

15

4 EXAMPLES 16

1.25

w2

1.00

1
I
il i RN
I |
imimim |

i |

0.75

T
N
A

0.50

iR
BB S
SHEEnE

T
¥

0.25

e
il

—0.00

—0.25

0.00 0.50 1.00 1.50 2.00
%1

Figure 2: Inlet-outlet mappings plotted from the “view mappings” menu, showing boundary condition values. Physical bound-
aries have a positive value (1=green), interpolation boundaries have a value of zero (0=blue) and periodic boundaries have a
negative value (shown in black).

4 EXAMPLES 17

1.25

w2

1.00

N
INimin |
i |

T
T

0.75

T
N
A

BB S
SHEEnE

0.50

iR

T
¥

0.25

T
LN R

e
il

—0.00

—0.25

Figure 3: Inlet-outlet mappings plotted from the “view mappings” menu, showing shared side values. Grids that share the same
physical boundary should have the same value of the share flag. For example, the two inlet grids on the right share boundaries
with the back-ground grid (value 2=red). The inlet grids also share boundaries with each other (value 5)

4 EXAMPLES 18

1.25

1.00

0.75

0.50

u"rmky
[

0.25

0.00

—0.25

‘
=]

Figure 4: Inlet-outlet overlapping grid. To create this grid we had to prevent the background grid from cutting holes in the two
inlet grids (on the right) and the outlet grid on the left. The outlet grid was also prevented from cutting holes in the background
grid.

4 EXAMPLES

4.8 Valve

19

Here is a command file to create a grid around a two-dimensional valve (file Overt ur e/ sanpl eG i ds/ val ve. cd).

1 *

2 * Create an overlapping grid for a 2D val ve
3 *

4 * time to make: old:27s (ultra) new 4.4s
5 *

6 create mappi ngs

7 *

8 * First make a back-ground grid
9 *

10 rectangl e

11 mappi ngNane

12 backG ound

13 set corners

14 01. 0 1.

15 l'i nes

16 * 41 41

17 * 51 51

18 49 49

19 share

20 1234

21 exit

22 *

23 * Now make the val ve

24 *

25 Snoot hedPol ygon

26 mappi ngNanme

27 val ve

28 vertices

29 * .4 .4 .65 .65 ok

30 * .45 .45 .7 .7 ok

31 * A7 .47 .72 .72 ok
32 * 475 . 475 . 725 .725 no
33 * 47 .47 .72 .72 last used, ok
34 4

35 0.47 0.

36 0.47 .75

37 0.72 .5

38 0.72 0.

39 n-di st
40 fixed normal distance
41 * 1
42 .05
43 l'i nes
44 * 65 9
45 * 759
46 73 9
47 boundary conditions
48 1110
49 share

50 3300

51 shar pness

52 15

53 15

54 15

55 15

56 t-stretch

57 1. 0

58 1. 6.

59 1. 4.

60 1. 0.

61 n-stretch

62 1. 4. 0.

The resulting grid is shown in figure 5.

ture/ sanpl eGi ds/ val veCC. cnd.

63 exit
64 *
65 * Here is the part of the boundary that
66 * the val ve cl oses agai nst
67 *
68 Snoot hedPol ygon
69 nmappi ngName
70 st opper
71 vertices
72 4
73 1. .5
74 0.75 .5
75 0.5 .75
76 0.5 1.
7 n-di st
78 fixed normal distance
79 * 1
80 . 05
81 l'i nes
82 * 619
83 * 61 9
84 65 9
85 t-stretch
86 1. 0
87 1. 5
88 1. 5
89 1. 0
0 n-stretch
91 1. 4. 0.
92 boundary conditions
93 1110
94 share
95 2400
96 exit
97 exit
98
99 * Make the overlapping grid
100 =
101 generate an overlapping grid
102 backGr ound
103 st opper
104 val ve
105 done
106 change paraneters
107 ghost points
108 al
109 222222
110 exit
111 * debug
112~ 7
113 * display internediate results
114 conpute overl ap
115 * pause
116 exit
117~
118 * save an overlapping grid
119 save a grid (conpressed)
120 val ve. hdf
121 val ve
122 exit
123
The cell centered version may be created with Over -

4 EXAMPLES

After unmarkinterpolationPoints
1.00
0.75 H
Wi
: HH
0.50 pee
0.25 5
0,00 | L | 1 1 1
0.00 0.25 0.50 0.75

Figure 5: An overlapping grid for a valve

1.00

20

4 EXAMPLES

4.9

NACA airfoil

21

Here is a command file to create a grid around a two-dimensional NACAQ012 airfoil (file Overture/ sanpl eG i ds-
/ naca0012. cnd). The airfoil curve is created first with the Ai r f oi | Mappi ng (see the Mapping documentation for an
explanation of NACA 4 digit airfoils). This curve is blended with an ellipse (using transfinite interpolation) to make an initial
. The transfinite interpolation mapping then then smoothed using elliptic grid generation to form the airfoil grid.

grid

*
*

*

C

O©CoO~NOUIAWNE

46

Make a grid around a NACA0012 airfoil 47
48

reate mappi ngs 49
* 50
* First nmake a back-ground grid 51
* 52
rectangl e 53
mappi ngNane 54
backG ound 55

set corners 56
-1.52.5 -1.51.5 57

l'i nes 58
41 33 41 31 59
exit 60
* make the NACAO0012 airfoil (curve) 61
Airfoil 62
airfoil type 63
naca 64
exit 65
* make an ellipse as an outer boundary 66
Circle or ellipse 67
specify centre 68
.5.0 69
specify axes of the ellipse 70
1.5 1. 71
exit 72
* blend the airfoil to the ellipse to make a gri#B
tfi 74
choose bottom curve 75
airfoil 76
choose top curve 7
circle 78
boundary conditions 79
-1-110 80

l'i nes 81
73 17 82
mappi ngNane 83
airfoil-tfi 84

* pause 85
exit 86
* 87
elliptic 88
*project onto original mapping (toggle) 89

transform whi ch mappi ng?

The resulting grid is shown in figure 6.

airfoil -tf
el liptic snoot hing
* slow start to avoid porblens at trailing edge
nunber of multigrid levels

3

mexi mum nunber of iterations
15

red bl ack

snmoot her rel axation coefficient
.1

generate grid
* now reset parameters for better convergence
maxi mum nunber of iterations
30
snoot her rel axation coefficient
.8
generate grid
exit
mappi ngNane
airfoil-grid
* pause
exit
exit
*

* make an overlapping grid

*

generate an overlapping grid

backG ound
airfoil-grid
done

change paraneters
ghost points

al
222222
exi t
conput e overl ap

exit

save an overlapping grid
naca0012. hdf

naca

exit

4 EXAMPLES

1.50

1.00 T

T

.50

0.00

ﬂl’ R
[

—0.50

=17

-1.00

-1.50
-150 100 -0E=0 0.00 0.50 1.00 1.50

Figure 6: An overlapping grid for a NACA0012 airfoil

2.00

2.50

22

4 EXAMPLES

4.10 Hybrid grid for the inlet-outlet

Here is a command file to create a hybrid for an

/inletQutlet. hyb.cnd).

1 = 67
2 * create a grid to denonstrate various features 68
3 * 69
4 create nmappings 70
5 * make a back ground grid 71
6 rectangl e 72
7 set corners 73
8 02 01 74
9 l'i nes 75
10 61 31 76
11 mappi ngNane e
12 backG oundGri d 78
13 share 79
14 1234 80
15 exit 8l
16 * make an annul us 82
17 Annul us 83
18 centre for annul us 84
19 1. .5 85
20 i nner radius 86
21 .2 87
22 outer radius 88
23 .4 89
24 l'i nes 90
25 41 9 91
26 mappi ngNanme 92
27 annul us 93
28 boundary conditions 94
29 -1-110 95
30 exit 96
31 * the inlet (on the right) will consist of two 97
32 * snoot hed pol ygons 98
33 Snoot hedPol ygon 929
34 mappi ngNane 100
35 inlet-top 101
36 vertices 102
37 3 103
38 2. .85 104
39 2. .65 105
40 2.25 .65 106
41 n-di st 107
42 fixed normal distance 108
43 -.175 .2 109
44 shar pness 110
45 10. 111
46 10. 112
47 10. 113
48 t-stretch 114
49 0. 10. 115
50 1. 10. 116
51 0. 10. 117
52 l'i nes 118
53 25 11 119
54 boundary conditions 120
55 0110 121
56 * One boundary here shoul d match one boundary X2
57 * the backG oundGid, while another boundary 123
58 * should match a boundary on the inlet-bottoml24
59 * Set share flag to match correspondi ng share 1249
60 share 126
61 0520 127
62 exit 128
63 * 129
64 Snoot hedPol ygon 130
65 mappi ngNanme 131
66 inlet-bottom 132

23

inlet-outlet geometry. Overture/sanpl eGi ds-

vertices
3
2. .15
2. .35
2.25 .35
l'ines
25 11
n-di st
fixed norna
.175 .2
shar pness
10
10
10
t-stretch
0. 10
1. 10
0. 10
boundary conditions
0110
One boundary here shoul d match one boundary
of the backG oundGid, while another boundary
shoul d match a bounbdary on the inlet-bottom
Set share flag to match correspondi ng share val ues
share
0520
exit
* here is an outlet grid nade in the poor
rectangl e
set corners
-.35 .05
l'ines
15 15
mappi ngNane
out| et
boundary conditions
1011
exit
* now | ook at the mappings
Vi ew mappi ngs
backG oundGri d
annul us
inlet-top
inlet-bottom
out | et
*
* The grid is plotted with boundaries col oured
* by the boundary condition nunber. Here we

di stance

* Ok Ok F

man’' s way

.3 .7

* shoul d check that all interpolation boundaries
* are 0 (blue), all physical boundaries are positive
* and periodi c boundaries are black
* pause
*
* now we plot the boundaries by share val ue
* The sides that correspond to the same boundary
* shoul d be the sane col our
col our boundaries by share val ue
pause
ues erase and exit
exit

generate a hybrid nesh
* put the nonconforming grid first to be a | ower
* priority than the back-ground

outl et

backG oundGi d

annul us

133
134
135
136
137
138
139
140
141
142
143
144
145

4 EXAMPLES

*

*

inlet-top 146+ 31
inlet-bottom 147 conpute overl ap
done 148 exi t
change paraneters 149 set plotting frequency (<1 for never)
prevent hole cutting 150 -1
backG oundGid 151 continue generation
al | 152 exit
outl et 153 save grid in ingrid format
al | 154 inletQutlet.hyb.nsh
done 155 exit
exit 156 *
di splay internediate 157
set debug paraneter
200 -
o\ L
1.50 —
Wooi I I I I |
T T NN
L I | RN
| L
3 |
0.50
L i i H
L AH
] \ NN
RN T
—0.00 = 1 1 LI LT LI .
—0.00 Q.50 1.00 1.50 2.00

Figure 7: A hybrid grid for an inlet-outlet geometry.

24

4 EXAMPLES

411

Here is a command file to create a simple box in 3D with stretched grid lines.

Stretched cube

st ret chedCube. cnd)

1

2 * Create a 3D cube with stretched grid lines
3 *

4 create nmappings

5 Box

6 exit

7 stretch coordi nates

8 stretch

9 = choose a layer stretching a*tanh(b*(r-
10 ~ along axis O

11 specify stretching al ong axis=0 (x1)
12 | ayers

13 1

14~ give a,b,c in above fornmula

15 1. 10. .5

16 exit

17 * choose a stretching function with 2
18 = | ayers al ong axisl

19 specify stretching al ong axis=1 (x2)
20 | ayers
21 2
22 * give a,b,c for layer 1
23 1. 10. 0.
24 * give a,b,c for layer 2
25 1. 10. 1.
26 exit
27 exit
28 exit
29 exit this nmenu
30 generate an overlapping grid
31 st ret ched- box
32 done
33 conput e overl ap
34 exit
35 save an overlapping grid
36 st ret chedCube. hdf
37 stret chedCube

exit

25

(file Overture/ sanpl eGi ds/ -

An overlapping grid for a stretched cube.

4 EXAMPLES

4.12 Sphere in a box

26

Here is a command file to create a sphere in a box. The sphere is covered with two orthographic patches, one for the north-pole
and one for the south-pole. (file Overt ur e/ sanpl eG i ds/ si b. cnd)

l *

2 * command file to create a sphere in a box
3 *

4 * time to make: 594s new 3.5

5 =+ cpu=2s (ov1l5 sun-ultra optim zed)
6 * =. 37 (tux50)

7 create mappi ngs

8 * first nmake a sphere

9 Sphere

10 exit

11~

12 * now nake a mapping for the north pole
13 =

14 reparaneterize

15 or t hogr aphi c

16 specify sa, sb
17 2.5 2.5

18 exit

19 l'i nes

20 15 15 5

21 boundary conditions
22 000010
23 share

24 000010
25 mappi ngName

26 nort h- pol e

27 exit

28 =

29 * now make a mapping for the south pole
30 =

31 reparaneterize

32 or t hogr aphi c

33 choose north or south pole
34 -1

35 specify sa, sb

36 2.5 2.5

37 exit

38 l'i nes

39 15 15 5

The resulting grid is shown in figure 8.
ture/ sanpl eGri ds/ si bCC. cnd.

40
41
42

boundary conditions
000010
share
000010
mappi ngName
sout h- pol e
exit
*
* Here is the box
*
Box
set corners
-22-22-22
l'i nes
21 21 21
mappi ngNane
box
exi t
exit
*
generate an overlapping grid
box
nort h- pol e
sout h- pol e
done
change paraneters
* interpolation type
* explicit for all grids
ghost points
al
222222
exi t
conput e overl ap
exit
save an overlapping grid
si b. hdf
sib
exit

The cell-centered version can be made with Over -

4 EXAMPLES 27

Figure 8: An overlapping grid for a sphere in a box. The sphere is covered with two patches.

Figure 9: An overlapping grid for a sphere in a box. The interpolation points are also shown.

4 EXAMPLES

4.13 Sphere in a tube

28

Here is a command file to create a sphere in a cylindrical tube. The sphere is covered with two orthographic patches, one for the
north-pole and one for the south-pole. The sphere is contained in a tube that is represented as a cylinderical annulus together
with a rectangular box that forms the core of the cylinder. (file Over t ur e/ sanpl eGri ds/ spher el nATube. cnd)

*

l *

2 * command file to create a sphere in cylindrica
3 *

4+

5 create nmappi ngs

6 * first make a sphere

7 Sphere

8 exit

9

10 * now nake a mapping for the north pole
1~

12 reparaneterize

13 ort hogr aphi c

14 speci fy sa, sb
15 2.5 2.5

16 exit

17 l'i nes

18 15 15 5

19 boundary conditions
20 000010
21 share

22 000010

23 mappi ngName

24 nort h- pol e

25 exit

26

27 * now make a mapping for the south pole
28 *

29 reparaneterize

30 ort hogr aphi c

31 choose north or south pole
32 -1

33 speci fy sa, sb

34 2.5 2.5

35 exit

36 l'i nes

37 15 15 5

38 boundary conditions
39 000010

40 share

41 000010

42 mappi ngNanme

43 sout h-pol e

44 exit

45 =

46 * Here is the cylinder
47 =

48 * main cylinder

49 Cyl i nder

50 mappi ngNane

51 cyl i nder

The resulting grid is shown in figure 10.

52
tae
54

* orient the cylinder so y-axis is axial direction
orientation
201
bounds on the radial variable
.3.8
bounds on the axial variable
-1, 1.
l'ines
55 21 9
boundary conditions
-1-12304
share
002300
exit
* core of the main cylinder
Box
mappi ngName
cyl i nder Core
speci fy corners
-.5-1. -.5 .51. .5
l'ines
19 21 19
boundary conditions
002300
share
002300
exit
* pause
*
exit
generate an overlapping grid
cyl i nder Core
cyl i nder
nort h- pol e
sout h- pol e
done
change paraneters
ghost points
al
222222
exit
* display internediate
conpute overl ap
* continue
* pause
exit
save an overlapping grid
spher el nATube. hdf
sit
exit

4 EXAMPLES

1.00

0.75

0.50

0.2%

.00

—-0.25

—0.50

—0.75

Figure 10: An overlapping grid for a sphere in a cylindrical tube

29

4 EXAMPLES 30

4.14 Intersecting pipes

Here is a command file to create a grid for two intersecting pipes. Each pipe is made from a cylindrical annulus with a
rectangular grid for the core. The pipes intersect using the poor man’s intersection method with non-conforming grids. (A more
refined intersection would use a fillet). The key point here is that the boundaries must not cut holes and so this feature is turned
off. (file Over t ur e/ sanpl eGri ds/ pi pes. cnd)

1 = 50 -1-10102
2 * Make an overlapping grid for two intersecting pifes share
3 = cpu=2s (ov15 sun-ultra optini zed) 52 0 00300
4 = 53 nmappi ngName
5 create nmappings 54 br anchPi pe
6 * Here is the main pipe 55 exit
7 Cyl i nder 5 * Here is the core of the branch pipe
8 orientation 57 Box
9 120 58 speci fy corners
10 bounds on the radial variable 59 -.25 .25 -.25 .25 1.25 .25
11 .25 .5 60 l'i nes
12 bounds on the axial variable 61 9 15 9
13 -1.5 1. 62 boundary conditions
14 mappi ngNane 63 000100
15 mai nPi pe 64 share
16 l'i nes 65 000300
17 25217 66 nmappi ngName
18 boundary conditions 67 branchCor e
19 -1-11102 68 exit
20 share 69 exit
21 001200 70 generate an overlapping grid
22 exit 71 branchCor e
23 * Here is the core of the main pipe 72 br anchPi pe
24 * note: there is trouble if corner of core just 73 mai nCor e
25 * sticks outside the main pipe -- hole cutter 74 mai nPi pe
26 * misses. (happens with core half width=.3) 75 done
27 Box 76 change paraneters
28 specify corners e prevent hole cutting
29 -1.5-.25-.251. .25 .25 78 al |
30 l'i nes 79 al |
31 21 99 80 done
32 boundary conditions 8l all ow hol e cutting
33 110000 82 br anchPi pe
34 mappi ngNanme 83 branchCor e
35 mai nCor e 84 nmai nCor e
36 share 85 mai nPi pe
37 120000 86 done
38 exit 87 ghost points
39 * Here is the branch pipe 88 al |
40 Cyl i nder 89 222222
41 orientation 90 exit
42 201 91 * pause
43 bounds on the radial variable 92 conput e overl ap
44 .2 .4 93 exit
45 bounds on the axial variable 94 save an overlapping grid
46 .25 1.25 95 pi pes. hdf
47 l'i nes 96 pipes
48 23 11 7 21 11 7 97 exit
49 boundary conditions

The resulting grid is shown in figure 11.

4 EXAMPLES

compute overlap

Figure 11: An overlapping grid for two intersecting pipes

31

4 EXAMPLES

4.15 Body Of Revolution

32

Here is a command file to create a grid for a body of revolution. The body of revolution is created by revolving a two-
dimensional grid about a given line. The two dimensional grid in this case is created with the Snmoot hedPol ygon Mapping.
The body of revolution has a spherical polar singularity at both ends. We generate a new Mapping to cover each singularity.

We reparameterize the ends using an orthographic transformation. (file Over t ur e/ sanpl eG i ds/ revol ve. cnd)

1 *

2 * Create a cylindrical body of

* from a Snoot hed Pol ygon

revol ution

3
4 cpu=48s (ov15 sun-ultra optini zed)

5 create mappings

6 Snoot hedPol ygon

7 vertices

8 7

9 -1. 0

10 -1. .25

11 -.8 .5

12 0. .5

13 .8 .5

14 1. .25

15 1. 0

16 n-di st

17 fixed normal distance
18 .1

19 n-di st

20 fixed normal distance
21 .4

22 corners

23 speci fy positions of corners
24 -1. 0

25 1. 0

26 -1.40

27 1.4 0

28 t-stretch

29 05

30 .15 10

31 .15 10

32 0 10

33 .15 10

34 .15 10

35 0 10

36 exit

37 * making a body of revolution
38 * pause

39 body of revol ution

40 tangent of line to revol ve about
41 1. 00

42 mappi ngName

43 cyl i nder

44 l'i nes

45 55 25 7

46 boundary conditions
47 00-1-1210

438 share

49 00 0 010

50 exit

51 * patch on the front singularity
52 reparaneterize

53 mappi ngNanme

54 front

The resulting grid is shown in figure 12.

l'ines
15 15 5
ort hogr aphi c
speci fy sa, sb
.5 .5
exit
boundary conditions
000010
share
000010
exit
* patch on back singularity
reparaneterize
mappi ngNane
back
l'ines
15 15 7
ort hographi c
choose north or south pole
-1
specify sa, sb
.5 .5
exit
boundary conditions
000010
share
000010
exit
*
* Here is the box
*
Box
specify corners
-2-1-1211
l'ines
61 31 31
mappi ngNane
box
exit
* pause
exit
generate an overl apping grid
box
cyl i nder
front
back
done
conpute overl ap
exit
*
save an overlapping grid
revol ve. hdf
revol ve
exit

4 EXAMPLES 33

Figure 12: An overlapping grid for a body of revolution. The body is generated by revolving a two-dimensional smoothed-
polygon mapping. Orthographic patches are used to cover the singularities at the ends of the body.

4 EXAMPLES

416 3D valve

34

Here is a command file to create a grid for a three dimensional valve. The cross-section of this geometry is similar to the
two-dimensional valve shown earlier. (file Overt ur e/ sanpl eGri ds/ val ve3d. cnd)

1 = 67 .15
2 * Make a 3d valve 68 l'i nes
3 * 69 65 17
4 cpu=78s (ov15 sun-ultra optimn zed) 70 shar pness
5 create nmappi ngs 71 30
6 * main cylinder 72 30
7 Cyl i nder 73 30
8 mappi ngNanme 74 30
out er Cyl i nder 75 boundary conditions
10 * orient the cylinder so y-axis is axial directGon 0010
11 orientation e exit
12 201 78 * Make the valve as a body of revolution
13 bounds on the radial variable 79 body of revol ution
14 .4 1. 80 nmappi ngName
15 bounds on the axial variable 8l val ve
16 -.1.5 82 choose a point on the line to revol ve about
17 l'i nes 83 0. 1. 0.
18 55 11 9 84 l'i nes
19 boundary conditions 85 41 11 35
20 -1-10302 86 boundary conditions
21 share 87 0020-1-1
22 000102 88 share
23 exit 89 003000
24 * core of the main cylinder 90 exit
25 Box 91 * 2D cross section for the stopper
26 mappi ngNanme 92 Snoot hedPol ygon
27 cyl i nder Core 93 mappi ngName
28 set corners 94 st opper CrossSect i on
29 -.5.5 0. .5 -.5.5 95 vertices
30 l'i nes 96 4
31 19 17 19 97 .65 -.5
32 boundary conditions 98 .65 -.3
33 001200 929 .85 -.1
34 share 100 1. -.1
35 003100 101 n-di st
36 exit 102 fixed nornmal distance
37 * valve stem 103 .15
38 Cyl i nder 104 exit
39 mappi ngNane 105 * stopper
40 val veSt em 106 body of revol ution
41 * orient the cylinder so y-axis uis axial dirEXtion mappi ngNane
42 orientation 108 st opper
43 201 109 choose a point on the line to revol ve about
44 bounds on the radial variable 110 0. 1. o.
45 .2 .6 111 boundary conditions
46 bounds on the axial variable 112 1120-1-1
47 -.5-.2 113 share
48 l'i nes 114 420000
49 41 9 9 115 l'i nes
50 boundary conditions 116 35 11 41
51 -1-13220 117 exit
52 share 118 vi ew mappi ngs
53 004300 119 out er Cyl i nder
54 exit 120 cyl i nder Core
55 * Make a 2d cross-section of the valve 121 val veSt em
56 Snoot hedPol ygon 122 val ve
57 mappi ngNane 123 st opper
58 val veCrossSection 124 exit
59 vertices 125 exit
60 4 126 *
61 .4 0. 127 generate an overlapping grid
62 .85 0. 128 cyl i nder Core
63 .65 -.2 129 out er Cyl i nder
64 .4 -.2 130 st opper
65 n-di st 131 val ve
66 fixed normal distance 132 val veSt em

133
134
135
136
137
138
139
140

EXAMPLES

done
change paraneters
ghost points
al
222222
exit
* pause
conpute overl ap

The resulting grid is shown in figure 13.

0.75

0.50

—0.50

—0.25

exit

save an overl apping grid
val ve3d. hdf

val ve3d

exit

Figure 13: An overlapping grid for a three-dimensional valve.

35

4 EXAMPLES 36

4.17 Adding new grids to an existing overlapping grid.

New with version 18 This example shows how to start from an existing overlapping grid and add new grids. In this example
we begin by building Mappings for two new grids. From the “gener at e an over| appi ng gri d” menu we read in an
existing overlapping grid and then specify the additional mappings. Ogen uses an optimized algorithm to compute the new
overlapping grid. If for some reason this algorithm fails you can always choose “r eset gri d” followed by “conput e

over | ap” to rebuild the grid from scratch.

1 = 16 boundary conditions
2 * add mappings to an existing overlapping grid 17 0000
3 = 18 set corners
4 create nmappings 19 -1.5-.5-1.5-.5
5 =+ 20 nmappi ngName
6 annul us 21 refine
7 centre 22 exit
8 1. 1. 23 =
9 boundary conditions 24 exit this menu
10 -1-110 25 generate an overl apping grid
11 mappi ngNanme 26 read in an old grid
12 annul us2 27 cic
13 exit 28 annul us2
14 29 refine
15 rectangl e 30

The resulting grid is shown in figure 14.

1.50 =

0.50 =

0.00 =

-050

=1.00 =

-1.50 F

-1.00 -050 0.00 0.50 1.00 150 2.00
X

-2

.00
-2.00 -1.50

Figure 14: Ogen can be used to incrementally add new grids to an existing overlapping grid. Left: The initial overlapping grid.

Right: overlapping grid after adding two new component grids

0.50 =

]

ERNES e

[T

0.00 F ;

-050

s el

—1.00 =

-1.50 =

L

-2

.00
-200 -150 -100 -050 0.00 0.50 1.00

1.50

x1

2.00

4 EXAMPLES 37

4.18 Incrementally adding grids to an overlapping grid.

New with version 18 This example shows how to incrementally add new grids to an overlapping grid. As new grids are added
the overlapping grid can be re-computed to make sure that a valid grid exists. This can be a useful approach for building a large
complicated grid since any problems will be isolated to the component grid that may have caused an invalid grid to result.

1 create mappings 44 nmappi ngName
2 rectangl e 45 annul us3
3 l'i nes 46 exit
4 41 41 47
5 mappi ngNane 48 annul us
6 backG ound 49 inner and outer radii
7 exit 50 .1.2
8 = 51 l'i nes
9 annul us 52 21 5
10 i nner and outer radii 53 centre for annul us
11 .1 .2 54 .7 .65
12 l'ines 55 boundary conditions
13 21 5 56 -1-110
14 centre for annul us 57 mappi ngName
15 .25 .25 58 annul us4
16 boundary conditions 59 exit
17 -1-110 60 exit this menu
18 mappi ngNanme 61 generate an overl apping grid
19 annul us1 62 backG ound
20 exit 63 done choosi ng mappi ngs
21 o~ 64 conmput e overl ap
22 annul us 65 pause
23 i nner and outer radii 66 add grids
24 .1.2 67 annul us1
25 l'i nes 68 done choosi ng mappi ngs
26 21 5 69 conmput e overl ap
27 centre for annul us 70 pause
28 .6 .35 71 add grids
29 boundary conditions 72 annul us2
30 -1-110 73 done choosi ng mappi ngs
31 mappi ngNane 74 conmpute overl ap
32 annul us2 75 pause
33 exit 76 add grids
34 77 annul us3
35 annul us 78 done choosi ng mappi ngs
36 inner and outer radii 79 conput e overl ap
37 .1.2 80 pause
38 l'i nes 81 add grids
39 21 5 82 annul us4
40 centre for annul us 83 done choosi ng mappi ngs
41 .35 .65 84 conpute overl ap
42 boundary conditions 85
43 -1-110

The resulting grids at various stages are shown in figure 15.

38

4 EXAMPLES

1.00

0.75

0.50

[T
0.25

1.00

0.75

0.00
0.00

1.00

0.75

0.50

I

L]

j

B ANBRRe;
0.25

11

-

1.00

7

0.75

0.50

0.00
0.00

x1

x1

1.00

0.75

0.50

[T
0.25

1.00

0.00
0.00

1.00

0.75

0.50

1 I—i-{’

0.25

+H

1.00

7%

0.00
0.00

x1

x1

Figure 15: Ogen can be used to incrementally add new grids.

4 EXAMPLES 39

4.19 Other sample command files and grids

The Over t ur e/ sanpl eG i ds directory contains a number of other command files for creating grids. We list these here
with a brief explanation.

cilc.emd : Two dimensional cylinder in a long box. Used for computing the flow around a cylinder.

ellipsoid.cmd : Create a grid for a three-dimensional ellipsoid in a box. See also el | i psoi dCC. cnd for the cell-centered
version.

singularSphere.cmd : Build a grid for a sphere in a box where the singularities on the sphere are not removed. A PDE solver
must know how to deal with this special type of grid.

tse.cmd : Build a grid for a model two-stroke engine.
mastSail2d.cmd : Make a grid for a sail attached to a mast.

building3.cmd : Three dimensional grids for some buildings.

Figure 16: A fillet grid is used to join two cylinders, fi | | et TwoCyl . cnd.

40

4 EXAMPLES

/]

i e
i

i

e

./
o~

Figure 17: A JoinMapping is used to join two cylinders, j oi nTwoCy| . cnd. To create the deformed cylinder the JoinMapping
first computes the curves of intersection between two intersecting cylinders. Four TFIMappings are then generated to represent
each face of the deformed cylinder and finally another TFIMapping is used to blend these four surface TFIMappings.

o

Figure 18: An overlapping grid for a submarine created with sub. cnd. The submarine hull is defined as a body of revolution
from a spline curve. The sail and fins are created initially with the CrossSectionMapping. The JoinMapping is used to join

these appendages to the submarine body.

41

4 EXAMPLES

Figure 19: An overlapping grid for valve, port and cylinder created with val vePor t . cird. The JoinMapping is used to create

the grid that joins the valve-stem to the port surface.

4 EXAMPLES 42

i il
<] = =NaR
% i
K — .
IT‘ 1 — \L
Li | " \j
®
il I |
Y>-
KL\:LL” *LT/&/

Figure 20: A mast is attached to a sail. The inner boundary curves are defined from splines under tension while the component
grids are generated with hyperbolic grid generation mast Sai | 2d. cnd

4 EXAMPLES 43

Figure 21: The DepthMapping (see bottom figure) is used to give a vertical dimension to mappings defined in the plane,
dept h. cnd. In this case a separate TFI mapping, top left, defines the vertical height function Both an annulus and a square
(top right) are given a depth.

4 EXAMPLES

Figure 22: Grids for two disjoint regions that match along a circle, i nner Qut er . cnd

44

4 EXAMPLES 45

Figure 23: Grid for a 3d triangular sail. The SweepMapping is used to generate a grid around the edge of the sail, tri -
Sai |l . cnd

7
7
)

/
7
%

/7
-

$
W
)
{/////

7
7

",
7
il

7
Yy
7

7
i
=

>
S5
S

Ry

g

R Ry

A

[o55e!
evges
S5

<
S
=

Figure 24: CAD surface (left) and a volume mesh (right) generated with Overture Mappings and Ogen.

46

4 EXAMPLES

Figure 25: Grid for the core of a rocket, showing the fuel-grain star-pattern. Rocket shape was created with the cross-section

mapping and curves defined by the RocketMapping class. Thanks to Nathan Crane for building this grid.

Figure 26: Grid for some buildings built with bui | di ng3. cnd

5 MIXED PHYSICAL-INTERPOLATION BOUNDARIES, MAKING A C-GRID, H-GRID OR BLOCK-BLOCK GRIDA7

5 Mixed physical-interpolation boundaries, making a c-grid, h-grid or block-
block grid

To make a ’c-grid’ as in figure (27) or an *h-grid’ as in figure (28) or the two block grid of figure (29), one should use the
’mixed boundary’ option from the change parameters menu. A mixed boundary is a physical boundary where parts of the
boundary can interpolate from another (or the same) grid. Actually it is either the boundary points or the ghost points on parts
of the boundary that interpolate from another grid. When solving a PDE boundary value problem, the boundary points adjacent
to ghost points that interpolate will be “interior points” where the PDE should be applied, rather than the boundary condition.
A mixed boundary on a MappedG i d g will have g. boundar yCondi ti on(si de, axis) > 0 andg. boundary-
Fl ag(si de, axi s) ==MappedG i d: : m xedPhysi cal | nt er pol ati onBoundary.

There are two ways to determine which points on a mixed boundary should be interpolated

1. Automatic: With this option the program will attempt to find all the valid interpolation points. For the automatic
determination of the mixed boundary interpolation points you can specify the tolerance for matching in two possible
ways:

r matching tolerance : boundaries match if points are this close in unit square space.
x matching tolerance : boundaries match if points are this close in x space

The boundaries will be deemd to match if either one of the above two matching conditions holds.

2. Manual: with this option one must explicitly specify a set of points on the boundary that should be interpolated from
another grid. One also indicates whether to interpolate boundary points or ghost points. If there are multiple disjoint
regions to interpolate, each one should be specified separately. Even when points are specified in this manual case the
program will still check to see if the points can be interpolated in a valid manner (and only interpolate those valid ones)
using the r matching tolerance described above.

5.1 Automatic mixed-boundary interpolation

It is recommended when making a c-grid or an h-grid to have the matching parts of the boundaries actually overlap by an
amount greater than or equal to zero (as shown in the examples).

The c-grid was generated with the command file Over t ur e/ sanpl eGri ds/ cgri d. cnd. A c-grid has a special topol-
ogy where parts of the boundary of the c-grid actually become interior points with a periodic like boundary condition. This is
implemented in Ogen by the *mixed boundary” option. Along the c-grid branch cut’, ghost point values interpolate from the
opposite side of the c-grid.

Note that the c-grid boundary was made with a spline that wiggles a little bit along the branch cut. To ensure that the
branch cut would be properly found, the lower part of the cut was raised by a small amount so that it would overlap the upper
part of the grid (and vice versa to be symmetric). One can also specify a matching tolerance to take care of this problem, but
it is more robust to use this trick of overlapping the branch cut a little bit. A matching tolerance was actually specified here,
to be safe, but a message printed from ogen indicated that it was not needed. The h-grid was generated with the command
file Overture/ sanpl eGri ds/ hgri d. cnd. An h-grid has a special topology where parts of the boundary of the h-grid
actually become interior points that match up to a second grid. This is implemented in Ogen by the *mixed boundary’ option.
Along the h-grid "branch cut’, ghost point values interpolate from the other grid.

Note that the h-grid boundaries were made with splines that wiggle a little bit along the branch cuts (matching portions).
To ensure that the branch cuts would be properly found, the lower part of the cut was raised by a small amount so that it would
overlap the upper part of the grid (and vice versa to be symmetric). One can also specify a matching tolerance to take care of
this problem, but it is more robust to use this trick of overlapping the branch cut a little bit. A matching tolerance was actually
specified here, to be safe, but a message printed from ogen indicated that it was not needed.

The grid in figure (29) was generated with the command file Over t ur e/ sanpl eG i ds/ t woBI ock. cnd.

5.2 Manual specification of mixed-boundary interpolation points

The command file cgri d. manual . cnd found in the Over t ur e/ sanpl eGri ds directory shows how to manually create
a c-grid by specifying which points should be interpolated. Note that we specify how points on the bottom of the c-grid branch
cut interpolate from the top (along the ghost points) and how points on the top boundary interpolate from the bottom.

5 MIXED PHYSICAL-INTERPOLATION BOUNDARIES, MAKING A C-GRID, H-GRID OR BLOCK-BLOCK GRIDA8

Figure 27: An overlapping grid using a c-grid makes use of the mixed boundary’ option. A mixed-boundary is a boundary that
is sometimes a physical boundary of the domain and sometimes an interpolation boundary.

5.3 Spitting a grid for interpolation of a grid to itself

When mixed boundary interpolation points are to be interpolated from the same grid (as in the case of a c-grid) ogen will
actually temporarily split the grid into two pieces and determine how points on one piece interpolate from the other. This is
necessary to prevent points from interpolating from themselves. By default, for a mixed boundary on (side,axis) the grid is split
at the halfway point along “(axi s+1) nod nunmber O Di mensi ons”. If this is not correct you should explicity specify
where to split the grid using the speci fy split for self interpol ation option. In this case you specify the axis
that should be split and the index position of the split.

5 MIXED PHYSICAL-INTERPOLATION BOUNDARIES, MAKING A C-GRID, H-GRID OR BLOCK-BLOCK GRIDA49

il
il

R
f‘

i
[

i
‘Lﬂ
]

.
.
b1
.

Figure 28: An overlapping grid using an h-grid makes use of the ’mixed boundary’ option.

5 MIXED PHYSICAL-INTERPOLATION BOUNDARIES, MAKING A C-GRID, H-GRID OR BLOCK-BLOCK GRID50

0.50

025~

ol e e b]
0.00
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

k4

Figure 29: An overlapping grid for two blocks makes use of the ’mixed boundary’ option.

6 MANUAL HOLE CUTTING AND PHANTOM HOLE CUTTING 51

6 Manual Hole Cutting and Phantom Hole Cutting

Ogen’s hole cutting algorithm can make mistakes in some difficult cases such as when there are thin bodies. There is a manual
hole cutting option that can be used in these difficult cases. Recall that when ogen cuts a hole with the boundary of grid g it
marks points on grid g; that lie near the boundary of go. Points on g; are marked as interpolation or as hole points depending
on whether they are inside or outside grid go. The hole cutting algorithm can make a mistake if there is a grid g- that is very
close to the boundary of gq but which should not be cut. Normally one can fix this problem by choosing the option prevent hole
cutting of gg in g2 ; however there are some cases when one must allow gq to cut some holes in a different portion of gs.

There are two steps to perform manual hole cutting:

1. Specify phantom hole cutting for grid go onto grid g,. In this case only interpolation points on g; will be marked near the
boundary of go; no hole points will be marked. These interpolation points should completely surround the hole region.

2. Manually cut a small hole in grid g; using the manual hole cutting option. The hole points that are specified must lie
within the region of ¢, that should be removed. These hole points will act as a seed and will be swept out to fill the entire
hole region. If the manually placed hole points are put in the wrong location then the hole points may expand throughout
much of the grid, resulting in an invalid overlapping grid.

The command files ci cManual Hol eCut . cnd and si bManual Hol eCut . cnd in the Over t ur e/ sanpl eG i ds di-
rectory show examples of manually cutting holes.

7 TROUBLE SHOOTING 52

7 Trouble Shooting

In this section we give some hints on what to do when you are unable to build a grid.

When there is not enough overlap between the grids or you have made a mistake in specifying the boundary conditions
or share flag values etc. the grid generator will fail to build a grid. When the algorithm fails the grid will be plotted and the
offending points will be plotted with black marks. In addition information is printed to the screen and to a log file, ogen. | og
that may be helpful in tracking down what went wrong.

7.1 Failure of explicit interpolation

As an example, in figures (30) and (31) we show the result of trying to use expli cit i nterpol ati on with the two-
dimensional valve grid. The algorithm fails to interpolate some points. These points are plotted with black marks.

Overlap dlgorithm failed

1.00 — mynnm
. -
075 H \
s
e
i 22l
i
s il NN
0.50 HH S §
A RS H
E) whdu w 3
i
]
imy
0
s i
0.25 5
OOO L L | L | 1 1 1 L L | n

0.00 0.25 0.50 075 1.00

Figure 30: An example showing the failure of the overlapping grid algorithm when there is insufficient overlap. We have tried
to use explicit interpolation for the two-dimensional valve. The algorithm fails and plots the offending points with black marks.

When the algorithm fails there is information written to the file ogen. | og. In this case the file contains information on
each point that failed, as for example:

ERROR: unable to interpolate a point on grid=backGound, (il,i2,i3)=(26,35,0), x=(5.200e-01, 7.000e-01, 0.000e+00)

Try to interpolate fromgrid=stopper, r=(6.66e-01,5.96e-01, 0. 00e+00)

7 TROUBLE SHOOTING 53

| N I I T
verlap lalgarfithmy failed

'

s
-
s

:
/L
H
i

Figure 31: A magnification of the failed grid shows that the points marked in black cannot be interpolated in an explicit manner
using a 3 x 3 interpolation stencil.

s

mask =[1][21][2][-2][2][1][-2][-1]1[-1] : O=hole, -1=interp., 1=discret.

...point is inside but explicit interpolation failed because stencil has an interpolation point init.
Try to interpolate from grid=valve, r=(4.27e-01, 4. 84e-01, 0. 00e+00)

mask =[1][21][11[2]1[2][21[2][2][-1] : O=hole, -1l=interp., 1=discret.

...point is inside but explicit interpolation failed because stencil has an interpolation point init.

This information indicates that a point could not be interpolated from either of two possible grids since the 9-point inter-
polation stencil (indicated by the 9 values of mask) contains some points that are themselves interpolation points (mask=- 1).
The values of r indicate the unit square coordinates in the grid we are trying to interpolate from.

Possible solutions to this problem are to use implicit interpolation or to increase the number of grid points on the grids or
to decrease the interpolation width.

7 TROUBLE SHOOTING 54

7.2 Tips

Here are some tips for fixing a grid that fails:

check the log file: Check the ogen log file, ogen.log for informational messages that may help you understand what went
wrong.

display intermediate results: Turn on the option ‘display intermediate results’ in the ogen menu before choosing the option
‘compute overlap’. This will plot the grid at intermediate stages in the overlapping grid algorithm.

check the mappings: It is possible that the one of the Mapping’s you have created has an error in it. There is a function
available to check the properties of a Mapping. The Mapping can be checked either when you create the Mappings (use
the * check nmappi ng’ option) or from the grid generation menu. The checkMapping function will report any errors
it finds. For example it will check the derivatives of the mapping by using finite differences. There is probably no reason
to be concerned if the relative errors in the derivatives are small, less than 10—2 say.

Use implicit interpolation: As mentioned in section (3.5) implicit (default) interpolation requires less overlap than explicit
interpolation. If you are using explicit interpolation you could turn on implicit interpolation.

check boundary conditions: Usethevi ew mappi ngs optionunder cr eat e nmappi ngs to view all the mappings. Check
that all physical boundaries are shown as a positive value, that interpolation boundaries have a zero value and that periodic
boundaries are black.

check for sufficient overlap: Usethevi ew nmappi ngs optionunder cr eat e mappi ngs to view the mappings and check
that the mappings appear to overlap sufficiently. If there is not sufficient overlap then increase the number of grid points.

check the share flag: use the vi ew mappi ngs option under cr eat € nmappi ngs and plot the boundaries by their share
flag value. Make sure that different grids that share the same boundary have the same share flag value (see section (3.2)
for a description of share flags).

shared side tolerance: even if your share flags are correct, the grid generator has a relative tolerance that it uses to allow for
discrepancies between the boundary representations of two grids. This tolerance measures the distance in grid cells that
the boundaries can differ by and still be assumed to be the same boundary. If your boundaries do not match closely
then you may need to increase this value with the shar ed boundary t ol er ance option that is available from the
change paranet er s menu.

turn off hole cutting: As described in section (3.3), by default physical boundaries will cut holes in other nearby grids. You
may need to disable the hole cutting as shown in the “inlet outlet” example, section (4.7).

8 ADDING USER DEFINED MAPPING’S 55

8 Adding user defined Mapping’s

Advanced users of Overture may want to write their own Mapping class, see the Mapping class documentation for how to do
this. If you want to add a new type of Mapping to ogen then you should copy and change the driver program ogenDr i ver. C
(found in Overture/in) and add in your new Mapping. Compile and load this program to make your own version of ogen.

The next listing shows ogenDr i ver . C. If the preprocessor macro ADD_USER_MAPPI NGS is defined (for example, by
adding the compile flag - DADD_USER_MAPPI NGS then a user defined Ai r f oi | Mappi ng will be added.

1 /1

2 /] Here is the driver programfor ‘ogen’ - the overlapping grid generator
3 11

4 /] Usage: type

5 71 ogen

6 // torun with graphics, or type

7 11 ogen nopl ot

8 /1 to run w thout graphics, or

9 // ogen file.cmd

10 // to run ogen with graphics and read in a conrmand file, or

11 7/ ogen noplot file.cnml

12 /1 to run ogen without graphics and read in a conmmand file.

13 7/

14 // By default user commands will be saved in the file "ogen.cnd"
15 7/

16 // You can add to the driver any nonstandard Mapping' s that you want to use.

17 /1 See the exanpl e bel ow where (if the macro ADD USERMAPPI NGS is defined) an Airfoil Mapping
18 // is created and added to a list. The list is then passed to ogen. The Mapping

19 // can be subsequently changed within ogen, if required.

20 I/

21 // Thus, for exanple, your conpile line should | ook sonething I|ike:
22 I/ CC - DADD_USERMAPPI NGS ogenDriver.C

23 11

24 |/

25

26 #include "Overture. h"
27 #include "Mappi ngl nfornmation. h"
28 #include "PlotStuff.h"

30 // Here are some user defined mappings
31 #ifdef ADD USER MAPPI NGS

32 #include "Airfoil Mappi ng. h"

33 int addToMappi ngLi st (Mappi ng & map);
34 #endif

36 int ogen(Mppingl nfornmation & mappingl nfo, GenericG aphicsinterface & ps, const aString & comrandFil eNane);

38 int

39 nmain(int argc, char *argv[])

40 {

41 Overture::start(argc, argv);

42 /1 1ndex: :setBoundsCheck(off);

43

44 aString commandFi | eNane="";

45 if(argc > 1)

46 { /] look at argunents for "noplot" or sone other nane

47 astring line;

48 for(int i=1; i<argc; i++)

49 {

50 line=argv[i];

51 if(line=="noplot" || line=="nopause" || |ine=="abortOnEnd" || line=="nodirect")
52 continue; // these commands are processed by get Gaphicslnterface bel ow
53 el se if(comandFi | eName=="")

54 comrandFi | eName=l i ne;

55 }

56 }

57 el se

58 cout << "Usage: ‘ogen [noplot][nopause][abortOnEnd][file.cnd]’” \n"
59 " nopl ot : run wthout graphics \n"

60 " nopause: do not pause \n"

61 " abort OnEnd: abort if command file ends \n"

62 " file.cmd: read this command file \n";

64
65
66
67
68
69
70
71

8 ADDING USER DEFINED MAPPING’S 56

/] --- create user defined mappings ----
Mappi ngl nf or mati on mappi ngl nf o;

#i f def ADD_USER_MAPPI NGS
Airfoil Mapping airfoil;
mappi ngl nf o. mappi ngLi st. addEl ement (airfoil);
/! Do this so we can read the airfoil mapping froma data-base file
addToMappi ngList(airfoil);
#endi f
/1 Graphics interface:
/1 Note: options "noplot", "nopause" and "abort OnEnd" are handled in the next call:
GenericG aphicslinterface & ps = *QOverture::get G aphicsinterface("ogen: Overlapping Gid Generator"”, fal se, argc, ar
/1 By default start saving the command file called "ogen.cnd"
astring | ogFile="ogen.cmd";
ps. saveCommandFi | e(1 ogFil e);
cout << "User conmmands are being saved in the file ‘" << (const char *)logFile << "’\n";
/Il create nore mappings and/or neke an overlapping grid
ogen(mappi ngl nf o, ps, conmandFi | eNane) ;
Overture::finish();
return O;
}

9 OVERLAPPING GRID GENERATOR: OGEN 57

9 Overlapping Grid Generator: Ogen

The overlapping grid generation algorithm determines how the different component grids communicate with each other. The
algorithm must also determine those parts of component grids that are removed from the computation because that part of the
grid either lies underneath another grid of higher priority or else that part of the grid lies outside the domain.

9.1 Command descriptions

9.1.1 Interactive updateOverlap

int

updateOverlap(CompositeGrid & cg, Mappinglnformation & maplinfo)

Description: Here is a description of some of the commands that are available from the updat eOver | ap function of Ogen.
This function is called when you choose “gener at e over | appi ng gri d” from the ogen program.

compute overlap : this will compute the overlapping grid. As the grid is generated various information messages are
printed out. Some of these messages may only make sense to the joker who wrote this code.

change parameters : make changes to parameters. See the next section for details.

display intermediate results : this will toggle a debugging mode. When this mode is on, and you choose conput e
over | ap to generate the grid, then the overlapping grid will be plotted at various stages in its algorithm. The
algorithm is described in section (9.2). The program will pause at the end of each stage of the algorithm and allow
you to either cont i nue ortochange t he pl ot asdescribed next. Experienced users will be able to see when
something goes wrong and hopefully detect the cause.

change the plot : this will cause the grid to be re-plotted. You will be in the grid plotter menu and you can make changes
to the style of the plot (toggle grids on and off, plot interpolation points etc.). These changes will be retained when
you exit back to the grid generator.
9.1.2 Non-interactive updateOverlap
int
updateOverlap(CompositeGrid & cg)

Description: Build a composite grid non-interactively using the component grids found in cg. This function might be called if
one or more grids have changed.

Return value: 0=success, otherwise the number of errors encountered.

9.1.3 Moving Grid updateOverlap

int

updateOverlap(CompositeGrid & cg,
CompositeGrid & cgOld,

const LogicalArray & hasMoved,
const MovingGridOption & option =useOptimalAlgorithm)

Description: Determine an overlapping grid when one or more grids has moved. NOTE: If the number of grid points changes
then you should use the useFul | Al gori t hmoption.

cg (input) : grid to update
cgOld (input) : for grids that have not moved, share data with this CompositeGrid.
hasMoved (input): specify which grids have moved with hasMoved(grid)=TRUE

option (input) : An option from one of:

9 OVERLAPPING GRID GENERATOR: OGEN

enum Movi ngGi dOpti on

{
useOpt i mal Al gorit hm=0,

m ni m zeOver| ap=1,
useFul | Al gorithm
b

The useOpt i mal Al gor i t hmmay result in the overlap increasing as the grid is moved.

Return value: 0=succuss, otherwise the number of errors encountered.

58

9 OVERLAPPING GRID GENERATOR: OGEN 59

hangeParametersinclude.tex

9.2 Algorithm

The algorithm used by Ogen is based upon the original CMPGRD algorithm[1] with some major changes to improve robustness.
The basic improvement is that the new algorithm initially removes all grid points that lie inside “holes” in the grids. Once the
holes have been cut the program can determine explicitly whether there is enough overlap to generate an overlapping grid and
if there is not enough overlap the offending points can be shown.

The algorithm for computing the overlapping grid communication is perhaps most easily understood by reading the follow-
ing description and also referring to the series of examples that follow.

Here are the basic steps in brief:

interpolate boundaries: First try to interpolate points on physical boundaries from points on physical boundaries of other
grids.

Boundary points that interpolate from the interior of other grids are marked either as being ani nt er i or Boundar y-
Poi nt andani nt er pol ati onPoi nt (using a bitwise ‘or’ in the mask).

mark hole boundaries: For each physical boundary find points on other grids that are near to and inside or outside of the
boundary. After this step the holes in the grid will be bounded by a boundary of holes points next to a boundary of
interpolation points.

remove exterior points: Mark all remaining hole points. These points can be easily swept out since the hole cutting algorithm
ensures that all holes are bounded by interpolation points.

classify (improper) interpolation boundary: The points on the stairstep boundaries and interpolation boundaries are col-
lected into a list. We first try to interpolate these points from other grids using improper interpolation. A point is said to
interpolate in an improper way from a grid if it simply lies within the grid. Since all the points in the list lie within in the
domain they must interpolate from some other grid or else there is something wrong. See the section on trouble-shooting
for examples when this step fails.

classify proper interpolation boundary: We now take the list of (improperly) interpolated points and sort them into one of
the following categories:

proper interpolation: A point of a grid interapolates in a proper way from a second grid if the appropriate stencil of
points exists on the second grid and consists of the correct types of points for the implicit or explicit interpolation.

discretization point: An interpolation point on a physical boundary may be used as a dicretization point.

At the successful completion of this step we should have a valid overlapping grid. There should be no fatal errors in
performing the final steps.

interpolate discretization points: To reduce the amount of overlap we attempt to interpolate discretization points from grids
of higher priority.

remove redundant interpolation points: Any interpolation points that are not needed are removed from the computation.
Interpolation points that are needed but that can just as well be used as discretization points are turned into discretization
points.

9.3 Hole cutting algorithm

After checking for interpolation points on boundaries, the next step in the overlapping grid algorithm is to cut holes. This is
the most critical step in the algorithm. Each side of a grid that represents a physical boundary is used to cut holes in other grids
that overlay the boundary.

Each face on grid g representing a physical boundary is used to cut holes in other grids. We also mark points that can
interpolate from grid g. The goal is to build a barrier of hole points next to interpolation points that partitions the grid into two
regions — one region that is inside the domain and one region that is outside the domain.

e We check for points, x, on the face of grid g that can interpolate from from another grid g». These points i, on g, are
potential hole points.

e A potential hole point is not cut if it can interpolate from grid g, in this case the point is marked as an interpolation point.

9 OVERLAPPING GRID GENERATOR: OGEN 60

¢ A potential hole point is NOT cut if the distance to the cutting surface is greater than 2A x5 where Ax is a measure of the
cell size on g5 (currently the length of the diagonal of the cell i5). Thus in general there will be a layer of 1-3 points cut
near the cutting surface.

e A potential hole point is NOT cut if the point i, already can interpolate from another grid g3 AND the grid g3 shares the
same boundary with grid ¢g. This condition applies to a thin body and prevents points from being cut that are actually
inside the domain on the opposite side of the thin body.

This section needs to be completed...
1. Invert the points x, on grid g» given coordinates r,.

2. Compute the hol eMask mask array which indicates whether a point on the cutting face is inside of outside g-

Conput e t he hol eMask:
hol eMask(i 1,i2,i 3)

0 : point is outside and not invertible
1 : point is inside
point is outside but invertible

I
N

I
| grid2
hol eMask | |

+-0---0---2---2---1---1---1---1---1---1---2---2---2---0---0---- cutting curve,

3. The idea now is to mark all points on g- that are near the cutting face.

9.4 Finding exterior points by ray tracing

*** Ray tracing is NO longer performed to remove holes points*** but it is used to generate embedded boundary grids (a future
feature).

Exterior points are found by counting the number of times that a semi-infinite ray, starting from a point x and extending in
the y-direction to +oo, crosses the boundaries of the region. If the ray crosses the boundaries an even number of times then it
is outside the domain.

If a ray crosses the region where two grids overlap then there will appear to be two points of crossing. We must eliminate
one of these points of crossing or else we will obtain an incorrect result.

The ray casting algorithm will determine the intersection of the ray with the boundary surfaces represented as a triangulation
of the discrete points.

We keep a list of the positions of intersection, x;, as well as the grid and grid point location of the intersection. Ideally we
would only need to check whether two points of intersection from two different grids are close, ||x; — x;|| < e. Itis not very
easy, however, to determine an appropriate value for €. If the ray crosses the boundary in a nearly normal direction then the
distance d = ||x; — x;|| will be of order the discrepency between the two discrete representations of the surface which can be
estimated by ??

If, however, the ray crosses the boundary in a nearly tangential direction then the distance d could be as large as the grid
spacing in the tangential direction.

There are further complications since the body may represent a very thin surface (such as a wing) and there may be points
of intersection that are close together in physical space but actually on opposite sides of the thing body.

Thus to perform a robust check we do the following

1. Check that two intersecting points belong to two different grids, g1 # go.

2. Check that the boundaries on the two grids are shared sides (meaning they belong to the same surface as specified in the
grid generation by setting the shar e flag).

grid

9 OVERLAPPING GRID GENERATOR: OGEN 61

3. Check that the grid cells that contain the points of intersection have some vertices that are interpolation points (so that
we know we are in a region of overlap) ???

4. check that the normals to the boundary at the points of intersection point in the same basic direction, n; - ny > 0.
5. check that the distance d = ||x; — x| between the points satsifies
a=|(x2—x1) nf/[l(z =x))[| 0<a<1
d,, = normal discrepency

d; = tangential discrepency
d<ad, +(1—a)d

X2

X1

Figure 32: The points of intersection of a ray with a surface covered by two overlapping grids. If the ray is nearly tangent to
the surface then the two points of intersection may not be very close together.

9 OVERLAPPING GRID GENERATOR: OGEN 62

9.5 Adjusting grid points for the boundary mismatch problem

When the sides of two grids overlap on a boundary then there can be a problem interpolating one grid from the other if the grids
do not match well enough. This problem is especially likely if the grids are formed by interpolating data points and the grid
spacing is highly stretched in the normal direction.

Figure (33) shows two grids that share a boundary. If we suppose that the mapping for the grid is defined by linear
interpolation between the grid points then it is clear that points on the boundary of grid A appear to be well outside or well
inside the boundary of grid B, when actually the boundaries are meant to be the same.

This boundary mis-match causes two problems. The first problem, encountered by the grid generator, is that those boundary
points (or even interior points for highly strteched grids) that appear to be outside the grid should actually be allowed to
interpolate. The hole cutting algorithm will mark these points as being unusable and outside the grid. The second problem
occurs in PDE solvers. Even if we allow the points to interpolate, the interpolation will not be very accurate and the solution
can look bad.

-10 -9 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 ﬁrld A 5 6 7 8 9 10

Figure 33: Grid A and Grid B share a boundary but if the mappings are defined by linear interpolation, the grid point xq will
appear to be outside grid B.

To fix both these problems we adjust the points on grid A so that the boundary points of grid A are shifted to lie exactly on
the boundary of grid B. Other points on grid A are also shifted, but the amount of the shift decreases the further we are from
the boundary. If the grid is highly stretched then the relative amount we shift the points, compared to the local grid spacing,
decreases as we move away from the boundary. For example if the spacing near the boundary is 102 compared to the spacing
away from the boundary layer then the amount we shift interior points will be on the order of 103, a very small relative change.
Note that this shift is only done when we are determining the location of A grid points in the parameter space of grid
B (for interpolation). The actual grid points are not changed in the Conposi t eGr i d created by the grid generator. Also
note that points on grid A may be shifted one amount when interpolating from grid B, but could be shifted another amount if
interpolating from a third grid C.

9 OVERLAPPING GRID GENERATOR: OGEN 63

Referring to figure (34) the point x is shifted to the point x; on the boundary. The point x is also shifted, but by a smaller
amount, that depends on the distance from the boundary relative to the vector w

(x9 — X0) - W

)EQHX2+(X17XO)[17]
[[wl]?

=x9 + (x1 — %x0)[1 —
= S(Xl)XQ

The opposite-boundary vector w is chosen to extend from the boundary to the grid points as some distance from the boundary.
We use the grid line that is at least 1/3 of the distance (in index space) to the opposite side, but at least 10 lines (unless there
are fewer than 10 lines). The vector should be far enough away so that points in the boundary layer are shifted to be inside the
other grid, but close enough so that w is nearly parallel to the normal to the boundary.

The shift operator S will project the boundary points of grid A onto the boundary of grid B.

A complication occurs if the more than one side of grid A shares sides with the same grid B, as shown in figure (34). In this
case we must determine shifts in multiple directions so that after these shifts the boundary points on grid A are shifted to lie on
the boundary of grid B. We cannot simply apply the above algorithm for each side independently.

To fix this problem we sequentially apply the shift operations more than once in order to ensure that the grids points are
projected onto all the shared boundaries. Let Sy, S; and So denote the shift mappings in each coordinate direction. In two
dimensions, the operator

X~2 — Slsox

will not work properly since after the application of S; the points on boundary 0 can be shifted off the boundary. However the
operator
)52 — 808180X

would work since the final S, operator will not change the points on boundary 1 (since the corner points of grid A have been
projected to the corner points of grid B after the two steps S;Sox).
Rather than applying S twice it is more efficient to define new operators to perform the projection in only two steps:

X~2 — §1§0x
We can do this

So = So(x1 +)
y = So(x1)x1
S, =8,
In three-dimensions if we have three adjacent shared faces then
)52 — ggglgox
Sy = S0S2S1So
S, =8,
S =8,

9 OVERLAPPING GRID GENERATOR: OGEN 64

" 00 0.

Figure 34: An overlapping grid testing the mismatch problem, created with mi smat ch. cnd. The refinement grid is artifically
translated so that the two boundaries it shares with the base grid do not match. The figure on the right is a magnification of the
lower left corner, before the overlap algorithm was applied.

9.6 Refinement Grids

Refinement grids can be added to a Gri dCol | ecti on or to a Conposi t eG i d. The component grids that exist in the
original Conposi t eG i dare known as base grids. These grids represent refinement level 0. Refinement grids are added on
a particular base grid and belong to a particular level. Normally the refinement levels are properly nested so that all grids on
refinement level [are contained in the grids on refinement level [— 1.

A given refinement grid will have only one parent grid on refinement level 0, i.e. it will belong to only one base grid. A
refinement grid on level I may have more than one parent grid on level [— 1.

Normally a refinement grid will interpolate its ghost values from other refinement grids on the same level or from its parent
grids. Points on the parent grid that lie underneath the refinement will interpolate from the refinement (also known as the child
grid).

If refinement grids lie in a region where two base grids overlap, it is necessary to determine how the refinements interpolate
from the grids they overlap that belong to a different base grid.

The updat eRef i nerment s function determines how refinement grids interpolate from other grids that they overlap. This
function does not determine how a refinement grid interpolates from the grid it has refined.

If a refinement...

9 OVERLAPPING GRID GENERATOR: OGEN 65

9.7 Improved Quality Interpolation

This is new* Version 16 or higher.
Normally one wants to avoid having a fine grid interpolate from a coarse grid or vice versa. Often this can be accomplished
through the normal specification of a priority for each grid. Sometimes, however, using a single priority per grid is not sufficient.

Figure 35: The lower annulus (the highest priority grid) has points that interpolate from the fine boundary layer grid of the upper
annulus. This interpolation will be inaccurate if the solution varies rapidly in the boundary layer, and the lower annulus will be
unable to represent the boundary layer solution accurately. This problem cannot be fixed by simply changing the priorities of
the grids.

Figure (35) shows a grid where the highest priority grid (the bottom annulus) interpolates from the fine boundary layer grid
of the top annulus. By turning on the flag to improve the quality of interpolation the grid shown in figure (36) results.
We use a simple measure of the quality of the interpolation to be the relative size of the grid cells on the two grids involved.

cell size of the interpolation point
cell size of the interpolee point

quality of interpolation =

The quality is bad (i.e. large) if the interpolee grid cells are smaller. This simple measure seems adequate for our purposes of
preventing coarse grid points on higher priority grids from interpolating from lower priority grids.
The algorithm for removing poor quality points is

1. Follow the standard algorithm until all points have been interpolated but redundant points have not yet been removed.

2. Try to interpolate all points on the finest grid that can interpolate from a lower priority grid. (This is not done in the
standard case).

3. Attempt to remove poor quality points from the boundary of the interpolation point region where a point interpolates
from a lower priority grid. A point is removed if it is not needed for discretization and the quality measure is greater
than a specified value (normally around 2). If a point is removed then also check the new boundary points that are now
exposed.

4. After points have been removed we need to go back and update any other interpolation points that can no-longer interpo-
late (since they required some of the points that were deleted).

The algorithm is supposed to be guaranteed to give a valid grid provided a grid could be made without the improvement steps.

9.7.1 Note:

There is a more sophisticated way to measure the quality of interpolation. ***This measure is not used currently**,

9 OVERLAPPING GRID GENERATOR: OGEN 66

Figure 36: With the ‘improved quality’ option turned on, the lower annulus no longer interpolates from the fine boundary layer
of the upper annulus.

One way to measure the quality of the interpolation is defined as follows. We would like the cell at an interpolation point
on grid A to be approximately the same size, shape and orientation as the cells on the interpolee grid B. The vector

dA _ 6XA

= Ard
‘ 873— "

i
measures the grid cell spacing and orientation of the side of the cell along the axis r; of grid A. This vector corresponds to a

vector in the parameter space of grid B given by
orB

B_|Z_|g4
r; |:6X:|dz

The length in grid cells of this vector rZ is approximately

1

ArlB 0 0
0 AiZ,B ? r;
0 0 g

where we have scaled each element by the appropriate grid spacing. This length should be near 1 for good quality (since the
original vector d#* has a length of one grid cell).
Thus to measure the quality of all sides on the original cell we can compute

— i A
p= 0 Arf 8){ or 0 ATQ 0

1
AT ? O 1 ropnt roxar [Arf 00
0 0 1 0 0 Arg

B
Arg

The interpolation will be defined to be of high quality if this norm is near 1. In particular we use the quality measure

1 1
9= §(P+5)

where we prefer points with a smaller value for g.

10 TREATMENT OF NEARBY BOUNDARIES AND THE BOUNDARYDISCRETISATIONWIDTH 67

10 Treatment of nearby boundaries and the boundaryDiscretisationWidth

** new with version 18**

Figure (37) shows the grid generated in the case when two boundaries are very near to one another. The
boundar yDi screti sati onW dt h parameter, which is by default 3, indicates that any boundary point that is a discretisa-
tion point should have two interior neighbouring points so that a one-sided 3-point scheme could be applied on the boundary.
To ensure this condition is satisfied extra points are allowed that normally would not be valid. The interpolation points that
are outside the domain are “interpolated” from the nearest point on the boundary by pretending that the interpolation point has
been moved to the boundary. This will only be first order accurate interpolation.

10 TREATMENT OF NEARBY BOUNDARIES AND THE BOUNDARYDISCRETISATIONWIDTH

1.00
.

0.75 =

0.50

0.5

0.00f

—025F

~0.50f

~075F

1,00 Lol
-100 -0

oo Lo b Pl Ll Lo b L .
75 —050 -025 0.00 025 0.50 0.75 1.00
X

Li oy

68

Figure 37: When two boundaries are nearby to one another the overlapping grid algorithm ensures that enough interior grid-
points remain next to the boundary points to allow the boundary point to be discretised. While not very accurate this approach

at least allows a grid to be built.

11 ADAPTIVE MESH REFINEMENT 69

11 Adaptive Mesh Refinement

When refinement grids are added to an overlapping grid and a refinement grid overlaps an interpolation boundary, the Ogen
function updat eRef i nenment should be called. This function will cut holes in the refinement grids and determine how to
interpolate points on the hole-boundary.

The order of preference for the interpolation of a point on the hole-boundary of a refinement grid is to

1. interpolate from another refinement at the same level and different base grid
2. interpolate from another refinement at a lower level and different base grid
3. interpolate from a refinement grid on the same base grid (this case should only be used as a backup and should normally
not be needed).
11.1 The algorithm for updating refinement meshes added to an overlapping grid.
There are two main steps in the algorithm for adding refinement meshes to an overlapping grid.
1. Build a mask array for each refinement grid that indicates where holes are and which points should be interpolated.
2. For each interpolation point on the hole boundary, find which grid to interpolate from.

To be efficient, these steps are performed with a different procedure than the normal overlapping grid algorithm. The mask
array is built entirely by looking at the mask array from the base grids. The interpolation points are determined by looking at
the interpolation points on the base grids in order to determine the likely interpolee grids.

11 ADAPTIVE MESH REFINEMENT 70

200 1

1.50 =t 1 !

Refinement

1.00 =

0.50

|

000

~0.50 [

-1.50 = t

, i

-2.00f !

bl ol 1 1 Jib L MWFEN NN TNN.-

-200 150 -100 -050 Q400 0.50 1.00 1.50 200

Figure 38: When refinement grids are added to an overlapping grid, the updat eRef i nerment function should be called in
order to compute a valid grid.

11 ADAPTIVE MESH REFINEMENT 71
11.2 Example: Circle in a Channel
These figures show the circle in a channel grid at various stages in the overlap algorithm.

After cut holes

2.00 —

1.50 =

1.00 =

0.50 =

0.00 =

050

-1.00 =

—1.50 F

-0.50 0.00 0.50 1.00 1.50 200
X

_ooplalali b | . L
-1.00

-200 -150

Grid after cutting holes. Physical boundaries are used to cut holes in nearby grids. The hole cutting algorithm will generate a
barrier of hole points and interpolation points that bounds the entire hole region.

After remove exterior points

2.00

1.50 =

0.50 =

0.00 =

050

—1.00 =

—1.50 =

| "
-0.50 0.00 0.50 1.00 1.50 200
X

_2.00 I . L
-1.00

2200 -1.50

Grid after removing all exterior points. The exterior points are easily swept out after the hole boundary has been marked.

11 ADAPTIVE MESH REFINEMENT 72

After marking (improper) interpolation

2.00 —

1.50 =

1.00 =

0.50 =

0.00 =

050

-1.00 =

—1.50 F

-0.50 0.00 0.50 1.00 1.50 200
X

|
-1.00

_opgplalul b 1y
-200 -150

Grid after marking (improper) interpolation. These improper interpolation points need only lie inside another grid.

After marking dall interpolation

2.00 —

150 =

1.00 =

0.50 =

0.00 =

050

—1.00

-1.50 =

| "
-0.50 0.00 0.50 1.00 1.50 200
X

ool . L
—1.00

-2.00 -1.50

Grid after marking all (proper) interpolation. We have attempted to interpolate discretization points on each grid from grids of
higher priority.

11 ADAPTIVE MESH REFINEMENT

1.50 =

1.00 =

0.50 =

0.00 =

050

-1.00 =

—1.50 F

—2.00 ==+

—2.00

Finished grid after removing excess interpolation points.

—1.50

-1.00

-0.50

0.00

0.50

1.00

1.50

200

11 ADAPTIVE MESH REFINEMENT 74
11.3 Example: Valve
These figures show the grid for a valve at various stages in the overlap algorithm.

After check interpalation on boundaries

1.00 Sl

0758 BN

e m
S EEE

Y
0.50 H e ,
Iy 3

0258

o.ooi : : ‘ : : : : L B

0.00 0.25 0.50 0.75 1.00

Grid after interpolation on boundaries.

After cut holes

e m
S EEE

0.50

nngl - " T -
BN A AR RS R RS RERAN | ERARREAA RS i RARRARNERINQNN

0.00 0.25 0.50 0.75 1.00

Grid after cutting holes. Physical boundaries are used to cut holes in nearby grids. The hole cutting algorithm will generate a
barrier of hole points and interpolation points that bounds the entire hole region.

11 ADAPTIVE MESH REFINEMENT

After remove exterior points

0758

T
i S

0.50

0258

0.00 . n [. n .
0.00 0.25 0.50 0.75 1.00

Grid after removing all exterior points. The exterior points are easily swept out after the hole boundary has been marked.

After marking (improper) interpolation

0.75 9

v Tn
EEEE

0.50 e 1

B
0.00 I . I L A1 n

0.00 0.25 0.50 0.75 1.00

Grid after marking (improper) interpolation. These improper interpolation points need only lie inside another grid.

75

11 ADAPTIVE MESH REFINEMENT

After marking dll interpolation

1.00

ol ple]

{EaEE

0.50

-]

0258 i

0.00 ! L ! L !
0.00 0.25 0.50 0.75 1.00

Grid after marking all (proper) interpolation.

After unmarkinterpolationPoints

0.75 9

o ala]
it

0.50

"

SRS

x

02549 iBaL

0.00 —
0.00 0.25 0.50 0.75 1.00

Finished grid after removing excess interpolation points.

76

REFERENCES 77

References

[1] G. CHESSHIRE AND W. HENSHAW, Composite overlapping meshes for the solution of partial differential equations, J.
Comp. Phys., 90 (1990), pp. 1-64.

[2] W. HENSHAW, Mappings for Overture, a description of the Mapping class and documentation for many useful Mappings,
Research Report LA-UR-96-3469, Los Alamos National Laboratory, 1996.

[3] , Plotstuff: A class for plotting stuff from Overture, Research Report LA-UR-96-3893, Los Alamos National Labora-

tory, 1996.

Index

adaptive mesh refinement
ogen, 69
airfoil, 21

body of revolution, 32
boundary condition, 5
mixed boundary condition, 47
physical boundary, 5
boundary mismatch, 62
boundaryDiscretisationWidth, 67
building, 46

c-grid, 47

command file, 8

cutting holes
turning off, 6

grid generation, 1

h-grid, 47

hints, 52

hole cutting, 59
algorithm, 59
manual, 51
phantom, 51

hybrid grid, 23

interpolation, 6
explicit, 6
implicit, 6
improper, 59
improved quality, 65
proper, 59
redundant, 59
turning off, 6

mapping
AirFoilMapping, 21
transfinite interpolation, 21

orthographic, 26
overlapping grid algorithm, 59

phantom hole cutting, 51

refinement grids, 64
rocket, 46

share flag, 6

tips, 54
trouble shooting, 52

unstructured grid, 23
user defined mapping, 55

78

